113 research outputs found

    Transmission of plasmons through a nanowire

    Full text link
    Exact quantitative understanding of plasmon propagation along nanowires is mandatory for designing and creating functional devices. Here we investigate plasmon transmission through top-down fabricated monocrystalline gold nanowires on a glass substrate. We show that the transmission through finite-length nanowires can be described by Fabry-P\'{e}rot oscillations that beat with free-space propagating light launched at the incoupling end. Using an extended Fabry-P\'{e}rot model, experimental and simulated length dependent transmission signals agree quantitatively with a fully analytical model.Comment: 5 pages, 4 figure

    Impedance matching and emission properties of optical antennas in a nanophotonic circuit

    Full text link
    An experimentally realizable prototype nanophotonic circuit consisting of a receiving and an emitting nano antenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between nanophotonic circuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the transmitting nano antenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nano antenna impedance to the transmission line characteristic impedance by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the transmitting antenna also depends on its geometry but is independent of the degree of impedance matching. Our systems approach to nanophotonics provides the basis for realizing general nanophotonic circuits and a large variety of derived novel devices

    Electromechanically Tunable Suspended Optical Nano-antenna

    Full text link
    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nano-antenna (SONA) can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems (NEMS)

    Evolutionary optimization of optical antennas

    Full text link
    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.Comment: Also see Supplementary material, as attached to the main pape

    Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption

    Get PDF
    Coherent perfect absorption (CPA) describes the absence of all outgoing modes from a lossy resonator, driven by lossless incoming modes. Here, we show that for nanoresonators that also exhibit radiative losses, e.g. plasmonic nanoantennas, a generalized version of CPA (gCPA) can be applied. In gCPA outgoing modes are suppressed only for a subset of (guided plasmonic) modes while other (radiative) modes are treated as additional loss channels - a situation typically referred to as perfect impedance matching. Here we make use of gCPA to show how to achieve perfect impedance matching between a single nanowire plasmonic waveguide and a plasmonic nanoantenna. Antennas with both radiant and subradiant characteristics are considered. We further demonstrate potential applications in back-ground-free sensing

    Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption

    Get PDF
    Coherent perfect absorption (CPA) describes the absence of all outgoing modes from a lossy resonator, driven by lossless incoming modes. Here, we show that for nanoresonators that also exhibit radiative losses, e.g., plasmonic nanoantennas, a generalized version of CPA (gCPA) can be applied. In gCPA outgoing modes are suppressed only for a subset of (guided plasmonic) modes while other (radiative) modes are treated as additional loss channels - a situation typically referred to as perfect impedance matching. Here we make use of gCPA to show how to achieve perfect impedance matching between a single nanowire plasmonic waveguide and a plasmonic nanoantenna. Antennas with both radiant and subradiant characteristics are considered. We further demonstrate potential applications in background-free sensing

    Second harmonic generation from plasmonic hotspots by controlled local symmetry breaking

    Full text link
    Bonding resonant modes of plasmonic nanoantennas with narrow gaps exhibit very large local field enhancement. These hotspots are highly attractive for boosting optical nonlinearities, such as second harmonic generation. However, for resonant symmetric gap antennas, the strong second harmonic sources created at the gap interfaces oscillate out-of-phase and therefore interfere destructively in the far-field. Here, we use an advanced nanofabrication approach to systematically break the local symmetry of nanoscopic antenna gaps while retaining the bonding resonant antenna mode at the fundamental frequency and the concomitant intensity hotspot. We find that antennas with the strongest local symmetry breaking emit correspondingly intense second harmonic radiation as compared to symmetric reference structures. By combining these findings with second harmonic radiation patterns as well as quantitative nonlinear simulations, we obtain remarkably detailed insights into the mechanism of second harmonic generation at the nanoscale. Our findings open new perspectives for the realization of non-reciprocal nanoscale systems, where local symmetry breaking is crucial to create unique functionalities
    • …
    corecore